Single-strand DNA breaks in Ig class switch recombination that depend on UNG but not AID.
نویسندگان
چکیده
B lymphocytes switch from secreting IgM to secreting IgG, IgA or IgE through a DNA recombination, class switch recombination (CSR), whose mechanism is incompletely understood. CSR is thought to be triggered by activation-induced deaminase (AID), which is believed to deaminate cytosines to uracil in single-strand regions of switch region DNA. Subsequent excision of uracils by uracil DNA glycosylase (UNG) (product of the UNG gene) generates abasic sites, which are targeted for DNA cleavage, producing DNA breaks that are critical intermediates in CSR. Consistent with this model, CSR-related double-strand breaks (DSBs)--detected by ligation-mediated PCR (LMPCR)--have been reported to be dramatically reduced in B cells from either AID(-/-) or UNG(-/-) mice. Here we examine single-strand breaks (SSBs) using LMPCR and report, surprisingly, that CSR-related anti-sense strand breaks in Sgamma regions are dependent only on UNG, and not AID, suggesting participation of a cytosine deaminase other than AID. This conclusion is supported by the sequences at these DNA breaks, which show a bias for a consensus sequence different from that reported for AID. The SSBs appear to be part of the normal CSR pathway since in B cells in which CSR is blocked by deletion of Smu, the content of Sgamma SSBs is elevated as though the breaks resolve inefficiently owing to the lack of a recombination partner for completing mu-to-gamma CSR. These results suggest a narrower role for AID in CSR than previously recognized and prompt a search for a putative alternative cytosine deaminase participating in CSR.
منابع مشابه
Inducible DNA breaks in Ig S regions are dependent on AID and UNG
Class switch recombination (CSR) occurs by an intrachromosomal deletion whereby the IgM constant region gene (Cmu) is replaced by a downstream constant region gene. This unique recombination event involves formation of double-strand breaks (DSBs) in immunoglobulin switch (S) regions, and requires activation-induced cytidine deaminase (AID), which converts cytosines to uracils. Repair of the ura...
متن کاملDNA polymerase β is able to repair breaks in switch regions and plays an inhibitory role during immunoglobulin class switch recombination
Immunoglobulin (Ig) class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), which converts cytosines to uracils in switch (S) regions. Subsequent excision of dU by uracil DNA glycosylase (UNG) of the base excision repair (BER) pathway is required to obtain double-strand break (DSB) intermediates for CSR. Since UNG normally initiates faithful repair, it is u...
متن کاملB cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil
The generation of high-affinity antibodies requires somatic hypermutation (SHM) and class switch recombination (CSR) at the immunoglobulin (Ig) locus. Both processes are triggered by activation-induced cytidine deaminase (AID) and require UNG-encoded uracil-DNA glycosylase. AID has been suggested to function as an mRNA editing deaminase or as a single-strand DNA deaminase. In the latter model, ...
متن کاملThe C Terminus of Activation Induced Cytidine Deaminase (AID) Recruits Proteins Important for Class Switch Recombination to the IG Locus: A Dissertation
Activation-induced cytidine deaminase (AID) is a key protein required for both class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes. AID is induced in B cells during an immune response. Lack of AID or mutant form of AID causes immunodeficiency; e.g., various mutations in the C terminus of AID causes hyper IgM (HIGM2) syndrome in humans. The C terminal 10 amino acid...
متن کاملHyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination.
Hyper-IgM syndrome (HIGM) is a heterogeneous condition characterized by impaired Ig class-switch recombination (CSR). The molecular defects that have so far been associated with this syndrome - which affect the CD40 ligand in HIGM type 1 (HIGM1), CD40 in HIGM3, and activation-induced cytidine deaminase (AID) in HIGM2 - do not account for all cases. We investigated the clinical and immunological...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International immunology
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2008